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A Phase I/l Dose-Finding Design

 Patient Outcome = {Response, Toxicity}
« The physician(s) specify

» A Lower Limit pg*on ny = P(Res)

» An Upper Limit p;* on n; = P(Tox)

» Three equally desirable(ny, n;) targets
which are used to construct an
Efficacy-Toxicity Trade-off Contour

Thall and Cook, Biometrics Sept. 2004




Dose Acceptability Criteria

Given current data, a dose X is Acceptable if

Pr{ ne(x,0) > pg’

data } > .90

Pr{ n-(x,0) < p; | data} > .90

(other numerical upper cutoffs may be used)




Efficacy-Toxicity Trade-Off Contours
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Comparing Doses

Given current data D, for each dose x

o(x,D) = desirability of x is the desirability of

(Qe,07) = ( E{ n=(x,0) | D}, E{ 7(x,0) | D})

Compare X, to X, using 6(x,,D) and d(x,,D)




E{n(x,.6)| D} =q; and E{n(x,6)| D} =d;
=  3(%,, D) > d(x,, D)
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Trial Conduct

1) Physician chooses the starting dose
2) Dose x Is acceptable if

> x has acceptable (X,0) & 7+(X,0) or

> x is the lowest untried dose & has acceptable 7-(X,0)
3) Treat each cohort at current most desirable dose

4) Do not skip untried doses

5) No dose acceptable =» Stop the trial
6) At the end of the trial, select the most desirable dose




Treating Acute Ischemic Stroke

RXx = Fixed dose abciximab
+ 0.0, 2.5, 5.0, 7.5, or 10.0 U reteplase

N, .« = 72 patients, cohort size = 3, first

cohort treated at 0.0 U reteplase

Conducted by National Institute of Neurological
Diseases & Stroke, NIH, USA (S. Warach, P.1.)




Treating Acute Ischemic Stroke

Tox = Intra-cranial bleeding, death, or
other severe AE, within 48 hrs.

Res = Reperfusion at 24 hrs. w/o Tox
= Outcome is Res, Tox, or Neither
p+*=.10 Upper Limit on 7,

p* = .50 Lower Limit on 7y




Treating Steroid-Refractory GVHD

Patients with steroid-refractory GVHD after
allotx from an HLA-matched donor

Rx = .25, .50, .75, or 1.00 mg/m? Pentostatin

N, = 36 patients, cohort size = 3, treat the first

cohort at 25 mg/m?

Conducted at M.D. Anderson Cancer Center
(D. Couriel, P.1.)




Treating Steroid-Refractory GVHD

Tox = {Unresolved infection or death}

Res ={ > 1 grade drop in GVHD}
both within 2 weeks

Tox and Res may both occur =»
Outcome is bivariate binary
p+* = .40 Upper Limit on P(Tox)

pc* = .20 Lower Limit on P(Res)




Some Possible Dose-Outcome Curves
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Probability Models

» Trinary Outcomes:
4-parameter continuation ratio model
» Bivariate Binary Outcomes:

6-parameter odds ratio model




Probability Model: Trinary Outcomes

logit n:(x,6) = pr+ X Py

logit no(x,0){1- n:(x,0) } = ue+ X Be

9=(“T9BT»”E9BE)




Probability Model: Bivariate Binary Outcomes

logit n:(x,0) = pur + XPr

logit m(x,0) = pe+ XBe 1 + X°Pe
Tap = Te(1-mg)?nP(L-mp)t® +
(-1)2*° ng(1-ng)ni(1-my)(€Y-1)/(eV+1)

0 = (“T ’ BT > HE » BE,l’ BE,Z ’\V)




Establishing Priors

Each component 0, of 6 is normally distributed,
0, ~ N(u,, o) >

&,. — (“11 611 HZ; 621 "y Hp! Gp) — hyperparamEterS
For each Xi , elicit
Mg ; = prior mean and sg; = prior sd of mg(x;,0)

M+ ; = prior mean and s ; = prior sd of m(x;,6)




Establishing Priors

Find the vector g that minimizes

RO = X 5 [{ms€) — s} + {5,5(6) — 851

y=EkET 1<j<J

+c Y (65— d1)

1<j<k<.J




Computing Posteriors

Numerical integration w.r.t © of
f(0) = Lik( D, |6) x Prior(0|§&)

using defensive importance sampling




Simulation Results for the Stroke Trial
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Simulation Scenarios for the Pentostatin Trial

Scenario 1 Scenario 2
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A Cohort-by-Cohort Illustration

AML patients relapsed within 6 mos of CR

RXx = Fixed dose ara-C + one of 4 doses of
XIAP, an anti-sense biological agent

Res = Alive & in CR at day35
Tox = Gr. 4 symptomatic tox within 35 days

» N, =36, cohort size =3

» p*=.50for tr, pg* = .20 for ¢
» Target pairs (.20, 0), (.60, .40), (1.00, .50)




Prior Distributions
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18 Patients
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21 Patients

I I I
0.4 0.6

Prob(Toxicity | dose 3)

0.8

0.2

I I
0.4 0.6

Prob(Efficacy | dose 3)

0.8




24 Patients

I I I
0.4 0.6

Prob(Toxicity | dose 3)

0.8

0.2

I I
0.4 0.6

Prob(Efficacy | dose 3)

0.8




27 Patients

I I I
0.4 0.6

Prob(Toxicity | dose 3)

0.8

0.2

I I
0.4 0.6

Prob(Efficacy | dose 3)

0.8




30 Patients

I I I
0.4 0.6

Prob(Toxicity | dose 3)

0.8

0.2

I I
0.4 0.6

Prob(Efficacy | dose 3)

0.8




33 Patients

I I I
0.4 0.6

Prob(Toxicity | dose 3)

0.2

I I
0.4 0.6

Prob(Efficacy | dose 3)

0.8




36 Patients
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Prior Distributions
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The Trade-Off-Based Algorithm reliably :

» Finds Safe Doses having High Efficacy

» Stops If no dose Is acceptable
(all doses are too toxic or inefficacious)

Computer code is freely available




Covariate-Adjusted Adaptive Randomization
In a Sarcoma Trial with Multi-Stage Treatments

Motivation: A Trial of

1200 mg/m? Gemcitabine (G)
VS
900 mg/m? G + Docetaxel (G+D)
for

Unresectable Soft Tissue Sarcoma




« Two Prognostic Covariates:
» Lelomyosarcoma (LMS) vs
any other sarcoma subtype
» Prior Pelvic Radiation (PPR)

PPR = 25% lower doses of G and G+D =
Bullt-in treatment-covariate interaction

e 120 Patients

« Each patient evaluated at 6, 12, 18, 24 weeks




R R R R
S — S — S — S

After each of up to four 6-week stages of therapy :
R = Response (CR/PR)
F = Treatment Fallure (Progression or Death)
S = Stable Disease

S at evaluations 1, 2, or 3 = Continue evaluation




Possible Overall Outcomes :

6 weeks |12 weeks | 18 weeks | 24 weeks | Overall
R R
F —
S R R
S F =
S S R R
S S F =
S S S R R
S S S F =
S S S S S




Probability Model

Per-course probabilities:
. r(T, Z,0) = Prob{Response| T, Z, 6}

m (T, Z, 8) = Prob{Failure| T, Z, 6}
In stage k = 1,2,3,4 with treatment T = G or G+D

for a patient with covariate Z = (Z,, Z,)




Linear Components

Uk,j(T’ 21 9) = /uj & ajT & 7k,j T Zr:l,z(ﬂj,r T Z],rT)Zr

= Main Effect (outcome =R or F)
+ Treatment Effect (T=%1)
+ Stage Effect (k=1, 2, 3, 4)
+ Covariate Effects (Z,, Z, =% 1)
+ Treatment x Covariate Interactions




Generalized Logistic Model Probabilities

Tey(T, Z,0) =

exp{ne,(7T,Z,0)}

1 + exp{ni,r(T,Z,0)} + exp{mir(T, Z,0)}

For stage k=1,2,3,4 and outcomey=Ror F




Priors

Prior parameters were obtained by
eliciting the means of n; and =
within each prognostic subgroup,
and calibrating variances to ensure
suitably “uninformative” priors




Adaptive Randomization Criterion

&r (T, Z,0) =Pr(R within 4 stages|Z)
& e (T, Z,0) =Pr(F within 4 stages|Z)
AR Criterion:
g(T,2,0) = &5 (T, Z,0) + (1-o){1- &, (T, Z, 0)}

using elicited weight o= 1.0/(1.0+1.3) = 0.565




Given the current data, randomize a patient
with covariates Z to G+D with probabillity
UZ,data) = Pr{{(+1, Z,0) > (-1, Z, 6) |data}

and to G with probabillity 1 — \(Z, data)

Equivalently, one may replace
ot (1) {1- 57} with &7 =136, ¢




Early Stopping Rule:

At any time during the trial, If
v(Z, data) > .99 or v(Z, data)<.01
Stop the trial in subgroup Z and

Select the superior treatment arm
In that subgroup




Scenario 1 (Null Case)
# Patients Treated

PPR, LMS

PPR, No LMS

zeta (%)

# Patients

zeta (%) # Patients

No PPR, LMS

No PPR, No LMS

zeta (%)

# Patients

45+
40+
351
30+
25
20+
15+
10+

zeta (%) # Patients




Scenario 1 (Null Case)
Treatment Selection Percentages

PPR, LMS PPR, No LMS

zeta (%) % Select _ zeta (%) % Select
No PPR, LMS No PPR, No LMS

60 33?
35+
40; 301
25+
| 20
20 e
O 10
] =l
zeta (%) % Select o

zeta (%) % Select




# Patients Treated

Scenario 2

PPR, LMS

PPR, No LMS

zeta (%)

# Patients

zeta (%) # Patients

No PPR, LMS

No PPR, No LMS

zeta (%)

# Patients zeta (%) # Patients




Treatment Selection Percentages

Scenario 2

PPR, LMS

PPR, No LMS

zeta (%)

% Select

zeta (%) % Select

No PPR, LMS

No PPR, No LMS

zeta (%)

% Select

zeta (%) % Select




# Patients Treated

Scenario 3

PPR, LMS

PPR, No LMS

zeta (%) # Patients zeta (%) # Patients
No PPR , LMS No PPR , No LMS
zeta (%) # Patients zeta (%) # Patients




Treatment Selection Percentages

Scenario 3

PPR, LMS

PPR, No LMS

zeta (%)

% Select

zeta (%) % Select

No PPR, LMS

No PPR, No LMS

zeta (%)

% Select

zeta (%) % Select




Scenario 4a (N=120, True Subgroup %)
# Patients Treated

PPR, LMS

PPR, No LMS

zeta (%) # Patients

zeta (%) # Patients

No PPR, LMS

No PPR, No LMS

zeta (%)

# Patients

zeta (%) # Patients




Scenario 4a (N=120, True Subgroup %)
Treatment Selection Percentages

PPR, LMS

PPR, No LMS

zeta (%)

% Select

zeta (%) % Select

No PPR, LMS

No PPR, No LMS

zeta (%)

% Select

zeta (%) % Select




Scenario 4c (N=240, 25% Per Subgroup)
# Patients Treated

PPR, LMS

PPR, No LMS

zeta (%)

# Patients

zeta (%) # Patients

No PPR, LMS

No PPR, No LMS

zeta (%)

# Patients

zeta (%) # Patients




Scenario 4c (N=240, 25% Per Subgroup)
Treatment Selection Percentages

PPR, LMS PPR, No LMS

100+

zeta (%) % Select zeta (%) % Select

No PPR, LMS No PPR, No LMS

zeta (%) % Select zeta (%) % Select




Sensitivity Analyses

 Ignore Z - Treatment-covariate
Interactions are missed completely, & the
Selection and AR imbalances may be
backwards within subgroups

Do AR separately within subgroups -
Substantial loss in AR imbalance if
treatment-covariate interactions present,
because there is no borrowing strength

* Weighting: The AR method is very
Insensitive to changes in @y =.10to .91




Conclusions

% patients assigned to the better treatment &

% correct selection probability both wihith
treatment effect & sample size

The method reliably detects treatment-
covariate interactions

Complex & computationally intensive -2
User Interface required for trial conduct




Bayesian Sensitivity Analyses of
Confounded Treatment Effects
In Survival Analysis




Why Randomize?

A single-arm phase Il clinical trial of
combination chemotherapy A (n=44)
for acute myelogenous leukemia (AML)
was conducted at M.D. Anderson
Cancer Center (MDACC) in 1995

« Combination chemotherapy B was
studied subsequently at MDACC, as
one arm of a four-arm randomized AML
trial in 1996-98

Estey and Thall, Blood, 2003




Why Randomize?

» A Bayesian Welbull regression model
was fit to data consisting of Survival times (T),
Treatment indicators (lg) and Covariates (2):

Weibull hazard(t) = ¢ t*-* exp(u+ylg+BZ)
» Z = Performance status, Age,
Treatment in a laminar airflow room (yes/no),
Cytogenetic abnormality (3 categories)
» Very disperse priors were assumed:

K, v, Bl» BZ» B33 B4» BS ~ lid N(O,lOOO)
¢ ~ Gamma(mean=1, var=1000)




Posterior of RR of Death With B versus A
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In fact, A and B were
the same treatment !!

A = B = Fludarabine + idarubicin +
ara-C + G-CSF + ATRA (FAIGA)
9

The observed RR was actually
Between-Trial Effect !!




Pr(RR>1|data) =.87
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The General Problem

Goal: Compare treatments, A and B, based on
real-valued parameters, 0, and 0,

» Typically 6, and 6, are probabilities or hazards,
possibly transformed and/or covariate-adjusted

» Comparative inferences are based on oy, = 0, - Og

Problem: If the data arise from two separate
studies of A and B, one can estimate

Ya1 = Effect of treatment A in study 1
Y, = Effect of treatment B in study 2 =»

A usual estimator estimates the confounded effect
0 =7Yp1" Y2 »NOL Oy =0, - Op




Applied Bayesian Subtraction

Overall = Treatment + Latent
9
Treatment = Overall — Latent

1. Estimate the Overall effect from the data

2. For several hypothetical Latent Effects,
compute the Treatment Effect and

Pr{Treatment Effect > 0 | data, Latent Effect}




Applied Bayesian Subtraction

Assume that
Ya1= 04t A, and yg,=05+A,

where A, and A, are study effects =»

0 = (0,-05) + (A, -1,) =6, + O, =P




Bayesian Computations

1) Given data D, and Dg from the trials of A and
B, compute the usual posterior, f(6 | D, ,Dg)

2) Hypothesize a trial effect distribution, f"(3,)

3) Compute the hypothetical posterior of §,:
f( 6y |DaDg) = f(8-5, | D, Dg)

4) Use f(N(3, | D, Dg) to make hypothesis-based
Inferences about g,

pr(8,>0|D,Dg), EM(5,|D,Dg), etc.




Bayesians are Sensitive!!

Usual Bayesian Sensitivity Analysis
» Prior,(0) + Lik(data| 8) > Posterior,(0|data)
» Prior, (0) + Lik(data| 8) > Posterior, (6|data)

> Prior; (0) + Lik(data| 8) > Posterior, (6|data)

Sensitivity to Hypothetical Trial Effects

> Trial effect dist'n f,("V(3,) , f(8
> Trial effect dist'n f,(V(3,) , f(8
> Trial effect dist'n f,("V(3,) , (3

data) > f,("(5, | data)
data) = f,(V(3, | data)
data) - f;("(§, | data)




Constructing Hypothetical Distributions

1) Fix var®(s,), vary EM(3,) over a
reasonable domain, and compute
f( 3, | Do Dg) @s a function of EM(S,)

or

2) Use historical data D, to obtain a finite
set of reasonable f"( 5, | D,), and
compute f"( 3, | D, ,Dg,D,;) for each




Comparing gemtuzumab ozogamicin
(GO, “Mylotarg”) to idarubicin + ara-C (lA)

« Atrial of IA in 31 AML/MDS patients
was conducted at MDACC In 1991-92

« Atrial of GO £ IL-11 in 31 AML/MDS

patients was conducted at MDACC in
2000-2001

« Since IL-11 had no effect on survival,
we will collapse the 2 arms of the GO
trial and focus on the GO-vs-IA
comparison




First GO-vs-IA Sensitivity Analysis

Covariates and Trial Effects
» Zubrod performance status (PS)
“*Good” =[PS=0,1,2] vs “Poor” =[PS=3,4]
> |If patient treated in a laminar airflow room (LAR)
» Cytogenetic karyotype: normal (baseline),
-5/-7 abnormality, or other abnormality

> BZ =PotPZy + ..t Pyl
» 0t =10,1,+..+,7,= confounded treatment-trial
effects vs. trial 1, 7, = Indicator of trial |=2,...,6

S(t|Z2) =pr(T>t| Z,06) for t>0,

T = survival time,
6 = model parameter vector




First GO-vs-IA Sensitivity Analysis

We considered three possible survival models:

Welibull: log[-log{S(t|Z)}] = BZ + ot + ¢ log(t)

Log logistic: -log[S(t|2){1-S(t|2)}] = BZ + 6t + ¢ log(t)
Lognormal : mean = BZ+ ot , with constant variance.
Maximized log likelihoods = -137.0, —139.4, -141.7 =>»

The Weibull gives a slightly better fit.




Fitted Weibull Model for the GO and IA Trials

Posterior Distribution

Variable Mean (sd) 95% CI
Intercept -1.14 (.39) (-1.93 -0.43)
PS=3,4 0.24 (.39) (-0.55, 0.96)
Treatment in LAR -0.43 (.34) (-1.09, 0.22)
Cyto = -5/-7 1.52 (.43) (0.64, 2.43)
Cyto = Other Abn. 1.22 (.40) (0.46, 2.06)
GO Trial vs IA Trial 0.84 (.36) (0.14, 1.53)
) 0.83 (.09) (0.66, 1.02)




First GO-vs-IA Sensitivity Analysis

1) Assume 6= o5, + 0, and
var(o,) = ¥z var(d|data) = 0.065

2) Vary E(d,) from O to E(6 |[data) = 0.84

3) Compute pr"(§,>0|data) =
prM( 8 - 8, >0|data) as a function of E(3,)




Pr(survival is worse with GO)
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Second GO-vs-IA Sensitivity Analysis

Incorporate additional historical data
From four other trials:

» Two trials of FAIG
(fludarabine + ara-C + idarubicin + G-CSF)

» Two trials of FAIGA (FAIG+ATRA)




Survival in the Six Trials

Tral Treatment | # Deaths / Median
# Patients | (95% Credible
Interval)
1 1A 16 /31 |47 (20-105)
2 GO 29 /51 | 12 (7-93)
3 FAIG | 34/36 | 14(7-24)
4 FAIG 18 /22 | 30 (13-63)
5 FAIGA | 33/44 | 37(20-64)
6 FAIGA | 12/17 |53 (18-128)




Survival Probability

Kaplan-Meier Plots for the 6 Trials

1.0

N Median Survival (95% C.1.)

IA: 31 47 (23,116)
oq GO: 51 12 (4, NA)
© FAIG: 36 19 (5, 40)

FAIG: 22 34 (5, 139)

FAIGA: 44 40 (17, 66)
© FAIGA: 17 49 (28, NA)
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Second GO-vs-IA Sensitivity Analysis

» For j=2,...,6, denote 1= I(trial ) and
t,= effect of the j™ treatment-trial
versus IA in trial 1

» 0T =9,T,+...40,T, = linear term of
confounded treatment-trial effects
vs. trial 1

> Fit the extended Welbull model

log[-log{ S (t| Z, )} = BZ+ ot + ¢ log(t)




Fitted Weibull Model for All 6 Trials

Posterior Distribution

Variable Mean (sd) 95% CI
Intercept 0.62 (.29) (-1.21 -0.09)
PS=3,4 0.67 (.24) (0.20, 1.14)
Treatment in LAR -1.04 (.21) (-1.45, -0.61)
Cyto = -5/-7 1.23 (.24) (0.77, 1.71)
Cyto = Other Abn. 0.63 (.24) (0.18, 1.09)
0 0.71 (.05) (0.63, 0.81)
5, (GO) 0.84 (.33) (0.20, 1.48)
5, (FAIG) 0.74 (.33) (0.10, 1.45)
5, (FAIG) 0.47 (.38) (-0.27, 1.23)
dc (FAIGA) 0.39 (.34) (-0.25, 1.08)
d¢ (FAIGA) -0.21 (.40) (-0.96, 0.61)




Posterior Between-Trial Effects

Trial 3-vs-Trial 4 Effects Trial 5-vs-Trial 6 Effects
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Trial Effect Trial Effect

FAIG studied in trials 3 and 4;: FAIGA studied in trials 5 and 6




Additivity Assumptions

Trial Treatment | Identifiable | Assumed
Effects Effects

1 1A 51 =0

2 GO 82 5(30"' Sx,z
3 FAIG 83 8FAlG"' Sx,3
4 FAIG 84 8FAlG + 8x,4
5 FAIGA 55 6FA|G + 8%5
6 FAIGA 56 SFAIG + 8%6




Computing Hypothetical 5, ,= 9, , - 6, ,

O3 = Opaigt 0,3 @Nd 8, = Sppgt 0,4 P

03 =904 = (Ot O13) = (Opaict 014) =0,3— 054
O5 = Oppigat 0,5 AN S5 = Oppcat 0,5 P

05 — 0= (Opaica™ 055 ) = (Oraicat 016) =05 = Oy
=>» Use the actual between-trial effects

+(d5 - 0,) and +(d; — J;)
as hypothetical 6, , -6, , =6, ,— 0

8%,2




Second GO-vs-IA Sensitivity Analysis

Hypothetical Effects

8%,2

8GO

Hypothetical Posterior
pr(GO is inferior to 1A)

= pr(6,,>0|data)
-0.27 (.29) 1.11 (.44) 0.99
0.27 (.29) 0.56 (.44) 0.90
-0.60 (.35) 1.44 (.50) >0.99
0.60 (.35) 0.23 (.47) 0.69
0.84 (.35) 0.00 (.48) 0.50
1.45 (.35) -0.61 (.48) 0.10
1.62 (.35) -0.78 (.48) 0.05
1.94 (.35) -1.10 (.48) 0.01




Four Hypothetical GO-vs-IA Effect Posteriors
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Hypothetical Trial Effect Mean= -0.27

p =0.99

-1 0 1
GO-vs-IA Effect

Hypothetical Trial Effect Mean= -0.60

p > 0.99

-1 0 1
GO-vs-lA Effect

0.4 0.6 0.8

0.2

0.0

0.4 0.6 0.8

0.2

0.0

Hypothetical Trial Effect Mean= 0.27

p =0.90

o 4+

1
GO-vs-IA Effect

Hypothetical Trial Effect Mean= 0.60

p=0.69

1
GO-vs-1A Effect




What We Do Not Assume

Given the data

10,2 -0,1) = 1(5,3-0;4) OF (5, 5-0,6)

This assumption would imply that, once one
between-trial effect distribution is available,
thereafter one never needs to randomize.

> (3, 5-9,,) andf(3, 5 - 6, ¢ ) are
hypothetical versions of (3, , - 9, ;)
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