Some Bayesian Methods for Clinical Trial Design and Analysis

Peter F. Thall

Biostatistics and Applied Mathematics Dept. University of Texas M.D. Anderson Cancer Center

> BASS XII Savannah, November 7-11, 2005

I. A Phase I/II Dose-Finding Design

II. Covariate-Adjusted Adaptive Randomization

III. Posterior Sensitivity Analyses of Confounded Treatment Effects

A Phase I/II Dose-Finding Design

- Patient Outcome = {Response, Toxicity}
- The physician(s) specify

A Lower Limit p_R* on π_R = P(Res)
 An Upper Limit p_T* on π_T = P(Tox)
 Three equally desirable(π_R, π_T) targets which are used to construct an Efficacy-Toxicity Trade-off Contour

Thall and Cook, *Biometrics* Sept. 2004

Dose Acceptability Criteria

Given current data, a dose x is Acceptable if

$\Pr\{ \pi_{E}(x,\theta) > p_{E}^{*} \mid data \} > .90$

Pr{ $\pi_{T}(x,\theta) < p_{T}^{*} | data$ } > .90

(other numerical upper cutoffs may be used)

Efficacy-Toxicity Trade-Off Contours

Comparing Doses

Given current data **D**, for each dose x

 $\delta(x, D) = desirability$ of x is the desirability of

 $\left(\mathsf{Q}_{\mathsf{E}},\mathsf{Q}_{\mathsf{T}}\right) = \left(\mathsf{E}\left\{\pi_{\mathsf{E}}(x,\theta) \mid D\right\}, \mathsf{E}\left\{\pi_{\mathsf{T}}(x,\theta) \mid D\right\}\right)$

Compare x_1 to x_2 using $\delta(x_1, D)$ and $\delta(x_2, D)$

$\begin{array}{l} \mathsf{E}\{\pi(x_1,\theta) \mid D\} = \mathsf{q}_1 \text{ and } \mathsf{E}\{\pi(x_2,\theta) \mid D\} = \mathsf{q}_2 \\ & \twoheadrightarrow \quad \delta(x_2,D) > \delta(x_1,D) \end{array}$

Trial Conduct

- 1) Physician chooses the starting dose
- 2) Dose *x* is *acceptable* if
 - > x has acceptable $\pi_{\mathsf{E}}(x,\theta) \& \pi_{\mathsf{T}}(x,\theta)$ or
- $\succ x$ is the lowest untried dose & has acceptable $\pi_T(x, \theta)$
- 3) Treat each cohort at current most desirable dose
- 4) Do not skip untried doses
- 5) No dose acceptable **→ Stop the trial**
- 6) At the end of the trial, select the most desirable dose

+ 0.0, 2.5, 5.0, 7.5, or 10.0 U reteplase

N_{max} = 72 patients, cohort size = 3, first cohort treated at 0.0 U reteplase

Conducted by National Institute of Neurological Diseases & Stroke, NIH, USA (S. Warach, P.I.)

Treating Acute Ischemic Stroke

Tox = Intra-cranial bleeding, death, or other severe AE, within 48 hrs.

Res = Reperfusion at 24 hrs. w/o Tox

→ Outcome is Res, Tox, or Neither

 $p_T^* = .10$ Upper Limit on π_T

 p_{E}^{*} = .50 Lower Limit on π_{R}

Treating Steroid-Refractory GVHD

Patients with steroid-refractory GVHD after allotx from an HLA-matched donor

Rx = .25, .50, .75, or 1.00 mg/m² Pentostatin

N_{max} = 36 patients, cohort size = 3, treat the first cohort at 25 mg/m²

Conducted at M.D. Anderson Cancer Center (D. Couriel, P.I.)

Treating Steroid-Refractory GVHD

Tox = {Unresolved infection or death}
Res = { ≥ 1 grade drop in GVHD}
both within 2 weeks
Tox and Res may both occur →
Outcome is bivariate binary

p_T* = .40 Upper Limit on P(Tox)

p_E* = .20 Lower Limit on P(Res)

Some Possible Dose-Outcome Curves

Probability Models

Trinary Outcomes:

4-parameter continuation ratio model

Bivariate Binary Outcomes:

6-parameter odds ratio model

Probability Model: Trinary Outcomes

logit
$$\pi_{T}(x,\theta) = \mu_{T} + x \beta_{T}$$

logit $\pi_{E}(x,\theta)/\{1 - \pi_{T}(x,\theta)\} = \mu_{E} + x \beta_{E}$
 $\theta = (\mu_{T}, \beta_{T}, \mu_{E}, \beta_{E})$

Probability Model: Bivariate Binary Outcomes

$$\begin{split} &\text{logit } \pi_{\mathsf{T}}(x,\theta) = \ \mu_{\mathsf{T}} + \ x\beta_{\mathsf{T}} \\ &\text{logit } \pi_{\mathsf{E}}(x,\theta) = \ \mu_{\mathsf{E}} + x\beta_{\mathsf{E},1} + x^{2}\beta_{\mathsf{E},2} \\ &\pi_{\mathsf{a},\mathsf{b}} = \ \pi_{\mathsf{E}}^{\mathsf{a}}(1-\pi_{\mathsf{E}})^{1-\mathsf{a}} \ \pi_{\mathsf{T}}^{\mathsf{b}}(1-\pi_{\mathsf{T}})^{1-\mathsf{b}} + \\ &(-1)^{\mathsf{a}+\mathsf{b}} \ \pi_{\mathsf{E}}(1-\pi_{\mathsf{E}})\pi_{\mathsf{T}}(1-\pi_{\mathsf{T}})(\mathsf{e}^{\psi}-1)/(\mathsf{e}^{\psi}+1) \\ &\theta = (\mu_{\mathsf{T}}, \beta_{\mathsf{T}}, \mu_{\mathsf{E}}, \beta_{\mathsf{E},1}, \beta_{\mathsf{E},2}, \psi) \end{split}$$

Establishing Priors

Each component θ_r of θ is normally distributed, $\theta_r \sim N(\mu_r, \sigma_r) \rightarrow$ $\xi = (\mu_1, \sigma_1, \mu_2, \sigma_2, ..., \mu_p, \sigma_p) =$ hyperparameters For each x_i, elicit $m_{E,i}$ = prior mean and $s_{E,i}$ = prior sd of $\pi_E(x_i, \theta)$ $m_{T,i}$ = prior mean and $s_{T,i}$ = prior sd of $\pi_T(x_i, \theta)$

Establishing Priors

Find the vector ξ that minimizes

$$h(\boldsymbol{\xi}) = \sum_{y=E,T} \sum_{1 \le j \le J} \left[\{ m_{y,j}(\boldsymbol{\xi}) - \hat{m}_{y,j} \}^2 + \{ s_{y,j}(\boldsymbol{\xi}) - \hat{s}_{y,j} \}^2 \right]$$

$$+ c \sum_{1 \le j < k \le J} (\tilde{\sigma}_j - \tilde{\sigma}_k)^2$$

Computing Posteriors

Numerical integration w.r.t θ of

 $f(\theta) = Lik(D_n \mid \theta) \times Prior(\theta \mid \xi)$

using defensive importance sampling

Simulation Results for the Stroke Trial

Prob(Response)

Prob(Response)

Prob(Response)

Simulation Scenarios for the Pentostatin Trial

A Cohort-by-Cohort Illustration

AML patients relapsed within 6 mos of CR

Rx = Fixed dose ara-C + one of 4 doses of XIAP, an anti-sense biological agent

Res = Alive & in CR at day35 **Tox** = Gr. 4 symptomatic tox within 35 days

Prior Distributions

3 Patients

6 Patients

9 Patients

12 Patients

15 Patients

Prob(Efficacy | dose 3)

18 Patients

21 Patients

24 Patients

27 Patients

30 Patients

33 Patients

36 Patients

Prior Distributions

Patients

6 Patients

9 Patients

12 Patients

15 Patients

18 Patients

21 Patients

24 Patients

27 Patients

30 Patients

33 Patients

36 Patients

The Trade-Off-Based Algorithm reliably :

Finds Safe Doses having High Efficacy

Stops if no dose is acceptable (all doses are too toxic or inefficacious)

Computer code is freely available

Covariate-Adjusted Adaptive Randomization in a Sarcoma Trial with Multi-Stage Treatments

```
Motivation: A Trial of
    1200 mg/m<sup>2</sup> Gemcitabine (G)
                   VS
   900 mg/m<sup>2</sup> G + Docetaxel (G+D)
                   for
 Unresectable Soft Tissue Sarcoma
```

 Two Prognostic Covariates:
Leiomyosarcoma (LMS) vs any other sarcoma subtype

Prior Pelvic Radiation (PPR)

PPR → 25% lower doses of G and G+D → Built-in treatment-covariate interaction

120 Patients

• Each patient evaluated at 6, 12, 18, 24 weeks

After each of up to four 6-week stages of therapy :

- **R** = Response (CR/PR)
- **F** = Treatment Failure (Progression or Death)
- **S** = Stable Disease

S at evaluations 1, 2, or $3 \rightarrow$ Continue evaluation

Possible Overall Outcomes :

6 weeks	12 weeks	18 weeks	24 weeks	Overall
R				R
F				F
S	R			R
S	F			F
S	S	R		R
S	S	F		F
S	S	S	R	R
S	S	S	F	F
S	S	S	S	S

Probability Model

Per-course probabilities:

 $\pi_{k,R}(\mathsf{T},\mathsf{Z},\theta) = \mathsf{Prob}\{\mathsf{Response} \mid \mathsf{T},\mathsf{Z},\theta\}$

 $\pi_{k,F}(\mathsf{T}, \mathsf{Z}, \theta) = \mathsf{Prob}\{\mathsf{Failure} | \mathsf{T}, \mathsf{Z}, \theta\}$

in stage k = 1,2,3,4 with treatment T = G or G+D

for a patient with covariate $\mathbf{Z} = (Z_1, Z_2)$

Linear Components

$$\eta_{k,j}(\mathbf{T},\mathbf{Z},\boldsymbol{\theta}) = \mu_j + \alpha_j \mathbf{T} + \gamma_{k,j} + \sum_{r=1,2} (\beta_{j,r} + \tau_{j,r} \mathbf{T}) \mathbf{Z}_r$$

- = Main Effect (outcome j= R or F)
 - + Treatment Effect ($T = \pm 1$)
 - + Stage Effect (k=1, 2, 3, 4)
 - + Covariate Effects $(Z_1, Z_2 = \pm 1)$
 - + Treatment x Covariate Interactions

Generalized Logistic Model Probabilities

$$\pi_{k,y}(T, \mathbf{Z}, \boldsymbol{\theta}) = \frac{\exp\{\eta_{k,y}(T, \mathbf{Z}, \boldsymbol{\theta})\}}{1 + \exp\{\eta_{k,F}(T, \mathbf{Z}, \boldsymbol{\theta})\} + \exp\{\eta_{k,R}(T, \mathbf{Z}, \boldsymbol{\theta})\}}$$

For stage k = 1,2,3,4 and outcome y = R or F

Priors

Prior parameters were obtained by eliciting the means of π_R and π_F within each prognostic subgroup, and calibrating variances to ensure suitably "uninformative" priors **Adaptive Randomization Criterion**

$$\xi_{4,R}^+$$
(T, Z, θ) = Pr(R within 4 stages|Z)

 $\xi_{4,F}^{+}(T, Z, \theta) = \Pr(F \text{ within 4 stages}|Z)$

AR Criterion:

 $\zeta(T, Z, \theta) = \omega \xi_{4,R}^{+}(T, Z, \theta) + (1 - \omega) \{1 - \xi_{4,F}^{+}(T, Z, \theta)\}$

using elicited weight $\omega = 1.0/(1.0+1.3) = 0.565$

Given the current data, randomize a patient

with covariates Z to G+D with probability

 $v(\mathbf{Z}, data) = \Pr\{ \zeta(+1, \mathbf{Z}, \theta) > \zeta(-1, \mathbf{Z}, \theta) | data \}$

and to **G** with probability $1 - v(\mathbf{Z}, data)$

Equivalently, one may replace $\zeta = \omega \xi_{4,R}^{+} + (1-\omega) \{1 - \xi_{4,F}^{+}\} \text{ with } \xi_{4,R}^{+} - 1.3 \xi_{4,F}^{+} \}$

Early Stopping Rule:

At any time during the trial, if

v(Z, data) > .99 or v(Z, data) < .01

Stop the trial in subgroup Z and Select the superior treatment arm in that subgroup

Sensitivity Analyses

- Ignore Z → Treatment-covariate interactions are missed completely, & the Selection and AR imbalances may be backwards within subgroups
- Do AR separately within subgroups → Substantial loss in AR imbalance if treatment-covariate interactions present, because there is no borrowing strength
- Weighting: The AR method is very insensitive to changes in $\omega_R = .10$ to .91

Conclusions

% patients assigned to the better treatment & % correct selection probability both with treatment effect & sample size

The method reliably detects treatmentcovariate interactions

Complex & computationally intensive → User Interface required for trial conduct Bayesian Sensitivity Analyses of Confounded Treatment Effects in Survival Analysis

Why Randomize?

- A single-arm phase II clinical trial of combination chemotherapy A (n=44) for acute myelogenous leukemia (AML) was conducted at M.D. Anderson Cancer Center (MDACC) in 1995
- Combination chemotherapy B was studied subsequently at MDACC, as one arm of a four-arm randomized AML trial in 1996-98

Why Randomize?

> A Bayesian Weibull regression model was fit to data consisting of Survival times (T), Treatment indicators (I_R) and Covariates (Z): Weibull hazard(t) = $\phi t^{\phi-1} \exp(\mu + \gamma I_{B} + \beta Z)$ \succ **Z** = Performance status, Age, Treatment in a laminar airflow room (yes/no), Cytogenetic abnormality (3 categories) Very disperse priors were assumed: $\mu, \gamma, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5 \sim \text{iid } N(0, 1000)$ $\phi \sim \text{Gamma(mean=1, var=1000)}$

Posterior of RR of Death With B versus A

In fact, A and B were the same treatment !!

A = B = Fludarabine + idarubicin + ara-C + G-CSF + ATRA (FAIGA) → The observed RR was actually Between-Trial Effect !!

Posterior RR of Death in *Trial 2-vs-Trial 1*

The General Problem

Goal: Compare treatments, A and B, based on real-valued parameters, θ_{A} and θ_{B} \succ Typically θ_{A} and θ_{B} are probabilities or hazards, possibly transformed and/or covariate-adjusted \succ Comparative inferences are based on $\delta_{A} = \theta_{A} - \theta_{R}$ **Problem: If the data arise from two separate** studies of A and B, one can estimate $\gamma_{A,1}$ = Effect of treatment A in study 1 $\gamma_{B,2}$ = Effect of treatment B in study 2 \rightarrow A usual estimator estimates the confounded effect $\delta = \gamma_{A,1} - \gamma_{B,2}$, not $\delta_{\theta} = \theta_A - \theta_B$

Applied Bayesian Subtraction

Overall = Treatment + Latent → Treatment = Overall – Latent

- 1. Estimate the **Overall** effect from the data
- 2. For several hypothetical Latent Effects, compute the Treatment Effect and

Pr{Treatment Effect > 0 | data, Latent Effect}

Applied Bayesian Subtraction

Assume that

$$\gamma_{A,1} = \theta_A + \lambda_1$$
 and $\gamma_{B,2} = \theta_B + \lambda_2$

where λ_1 and λ_2 are study effects \rightarrow

$$\delta = (\theta_{A} - \theta_{B}) + (\lambda_{1} - \lambda_{2}) = \delta_{\theta} + \delta_{\lambda} \rightarrow$$
$$\delta_{\theta} = \delta - \delta_{\lambda}$$

Bayesian Computations

- **1)** Given data D_A and D_B from the trials of A and B, compute the usual posterior, $f(\delta | D_A, D_B)$
- 2) Hypothesize a trial effect distribution, $f^{(h)}(\delta_{\lambda})$
- 3) Compute the hypothetical posterior of δ_{θ} : $f^{(h)}(\delta_{\theta} \mid D_A D_B) = f^{(h)}(\delta - \delta_{\lambda} \mid D_A D_B)$

4) Use $f^{(h)}(\delta_{\theta} | D_A D_B)$ to make hypothesis-based inferences about δ_{θ} $pr^{(h)}(\delta_{\theta} > 0 | D_A D_B)$, $E^{(h)}(\delta_{\theta} | D_A D_B)$, etc.

Bayesians are Sensitive!!

Usual Bayesian Sensitivity Analysis $Prior_1(\theta) + Lik(data|\theta) \rightarrow Posterior_1(\theta/data)$ $Prior_2(\theta) + Lik(data|\theta) \rightarrow Posterior_2(\theta/data)$ $Prior_3(\theta) + Lik(data|\theta) \rightarrow Posterior_3(\theta/data)$

Sensitivity to Hypothetical Trial Effects > Trial effect dist'n $f_1^{(h)}(\delta_{\lambda})$, $f(\delta|data) \rightarrow f_1^{(h)}(\delta_{\theta} | data)$ > Trial effect dist'n $f_2^{(h)}(\delta_{\lambda})$, $f(\delta|data) \rightarrow f_2^{(h)}(\delta_{\theta} | data)$ > Trial effect dist'n $f_3^{(h)}(\delta_{\lambda})$, $f(\delta|data) \rightarrow f_3^{(h)}(\delta_{\theta} | data)$

Constructing Hypothetical Distributions

1) Fix $var^{(h)}(\delta_{\lambda})$, vary $E^{(h)}(\delta_{\lambda})$ over a reasonable domain, and compute $f^{(h)}(\delta_{\theta} \mid D_A D_B)$ as a function of $E^{(h)}(\delta_{\lambda})$ or

2) Use historical data D_H to obtain a finite set of reasonable $f^{(h)}(\delta_{\lambda} | D_H)$, and compute $f^{(h)}(\delta_{\theta} | D_A, D_B, D_H)$ for each Comparing gemtuzumab ozogamicin (GO, "Mylotarg") to idarubicin + ara-C (IA)

- A trial of IA in 31 AML/MDS patients was conducted at MDACC in 1991-92
- A trial of GO ± IL-11 in 31 AML/MDS patients was conducted at MDACC in 2000-2001
- Since IL-11 had no effect on survival, we will collapse the 2 arms of the GO trial and focus on the GO-vs-IA comparison

First GO-vs-IA Sensitivity Analysis

T = survival time,

 θ = model parameter vector

First GO-vs-IA Sensitivity Analysis

We considered three possible survival models:

Weibull: $\log[-\log{S(t|\mathbf{Z})}] = \beta \mathbf{Z} + \delta \tau + \phi \log(t)$

Log logistic: $-\log[S(t|\mathbf{Z})/\{1-S(t|\mathbf{Z})\}] = \beta \mathbf{Z} + \delta \tau + \phi \log(t)$

Lognormal : mean = $\beta \mathbf{Z} + \delta \tau$, with constant variance.

Maximized log likelihoods = -137.0, -139.4, $-141.7 \rightarrow$

The Weibull gives a slightly better fit.

Fitted Weibull Model for the GO and IA Trials

	Posterior Distribution	
Variable	Mean (sd)	95% CI
Intercept	-1.14 (.39)	(-1.93 -0.43)
PS=3,4	0.24 (.39)	(-0.55, 0.96)
Treatment in LAR	-0.43 (.34)	(-1.09, 0.22)
Cyto =5/-7	1.52 (.43)	(0.64, 2.43)
Cyto = Other Abn.	1.22 (.40)	(0.46, 2.06)
GO Trial vs IA Trial	0.84 (.36)	(0.14, 1.53)
φ	0.83 (.09)	(0.66, 1.02)

First GO-vs-IA Sensitivity Analysis

1) Assume
$$\delta = \delta_{GO} + \delta_{\lambda}$$
 and var(δ_{λ}) = $\frac{1}{2}$ var($\delta | data$) = 0.065

2) Vary $E(\delta_{\lambda})$ from 0 to $E(\delta | data) = 0.84$

3) Compute $pr^{(h)}(\delta_{\theta} > 0 | data) =$ $pr^{(h)}(\delta - \delta_{\lambda} > 0 | data)$ as a function of $E(\delta_{\lambda})$

Percent of observed treatment-trial effect assumed to be due to trial

Pr(survival is worse with GO)

Survival in the Six Trials

Trial	Treatment	# Deaths /	Median
		# Patients	(95% Credible Interval)
1	IA	16/31	47 (20-105)
2	GO	29 /51	12 (7-93)
3	FAIG	34 / 36	14 (7-24)
4	FAIG	18 / 22	30 (13-63)
5	FAIGA	33 / 44	37 (20-64)
6	FAIGA	12 / 17	53 (18-128)

Kaplan-Meier Plots for the 6 Trials

Second GO-vs-IA Sensitivity Analysis

- For j=2,...,6, denote τ_j= l(trial j) and τ_j = effect of the jth treatment-trial versus IA in trial 1
- > $\delta \tau = \delta_2 \tau_2 + ... + \delta_6 \tau_6 =$ linear term of confounded treatment-trial effects vs. trial 1
- Fit the extended Weibull model

 $\log[-\log\{ S(t \mid Z, \tau) \}] = \beta Z + \delta \tau + \phi \log(t)$

Fitted Weibull Model for All 6 Trials

	Posterior Distribution	
Variable	Mean (sd)	95% CI
Intercept	0.62 (.29)	(-1.21 -0.09)
PS=3,4	0.67 (.24)	(0.20, 1.14)
Treatment in LAR	-1.04 (.21)	(-1.45, -0.61)
Cyto = -5/-7	1.23 (.24)	(0.77, 1.71)
Cyto = Other Abn.	0.63 (.24)	(0.18, 1.09)
φ	0.71 (.05)	(0.63, 0.81)
δ ₂ (GO)	0.84 (.33)	(0.20, 1.48)
$δ_3$ (FAIG)	0.74 (.33)	(0.10, 1.45)
δ ₄ (FAIG)	0.47 (.38)	(-0.27, 1.23)
$δ_5$ (FAIGA)	0.39 (.34)	(-0.25, 1.08)
$δ_6$ (FAIGA)	-0.21 (.40)	(-0.96, 0.61)

Posterior Between-Trial Effects

FAIG studied in trials 3 and 4; FAIGA studied in trials 5 and 6

Additivity Assumptions

Trial	Treatment	Identifiable	Assumed
		Effects	Effects
1	IA	$\delta_1 = 0$	
2	GO	δ_2	$\delta_{GO} + \delta_{\lambda,2}$
3	FAIG	δ_3	$\delta_{FAIG} + \delta_{\lambda,3}$
4	FAIG	δ_4	$\delta_{FAIG} + \delta_{\lambda,4}$
5	FAIGA	δ_5	$\delta_{FAIG} + \delta_{\lambda,5}$
6	FAIGA	δ ₆	$\delta_{FAIG} + \delta_{\lambda,6}$

Computing Hypothetical
$$\delta_{\lambda,2} = \delta_{\lambda,2} - \delta_{\lambda,1}$$

 $\delta_3 = \delta_{FAIG} + \delta_{\lambda,3}$ and $\delta_4 = \delta_{FAIG} + \delta_{\lambda,4}$ \Rightarrow
 $\delta_3 - \delta_4 = (\delta_{FAIG} + \delta_{\lambda,3}) - (\delta_{FAIG} + \delta_{\lambda,4}) = \delta_{\lambda,3} - \delta_{\lambda,4}$
 $\delta_5 = \delta_{FAIGA} + \delta_{\lambda,5}$ and $\delta_6 = \delta_{FAIGA} + \delta_{\lambda,6}$ \Rightarrow
 $\delta_5 - \delta_6 = (\delta_{FAIGA} + \delta_{\lambda,5}) - (\delta_{FAIGA} + \delta_{\lambda,6}) = \delta_{\lambda,5} - \delta_{\lambda,6}$
 \Rightarrow Use the actual between-trial effects
 $\pm (\delta_3 - \delta_4)$ and $\pm (\delta_5 - \delta_6)$
as hypothetical $\delta_{\lambda,2} - \delta_{\lambda,1} = \delta_{\lambda,2} - 0 = \delta_{\lambda,2}$

Second GO-vs-IA Sensitivity Analysis

Hypothetical Effects		Hypothetical Posterior
$\delta_{\lambda,2}$	δ _{GO}	$pr(GO is interior to IA) = pr(\delta_{GO} > 0 data)$
-0.27 (.29)	1.11 (.44)	0.99
0.27 (.29)	0.56 (.44)	0.90
-0.60 (.35)	1.44 (.50)	>0.99
0.60 (.35)	0.23 (.47)	0.69
0.84 (.35)	0.00 (.48)	0.50
1.45 (.35)	-0.61 (.48)	0.10
1.62 (.35)	-0.78 (.48)	0.05
1.94 (.35)	-1.10 (.48)	0.01

Four Hypothetical GO-vs-IA Effect Posteriors

What We Do Not Assume

Given the data

$$f(\delta_{\lambda,2} - \delta_{\lambda,1}) = f(\delta_{\lambda,3} - \delta_{\lambda,4}) \text{ or } f(\delta_{\lambda,5} - \delta_{\lambda,6})$$

This assumption would imply that, once one between-trial effect distribution is available, thereafter one never needs to randomize.

→
$$f(\delta_{\lambda,3} - \delta_{\lambda,4})$$
 and $f(\delta_{\lambda,5} - \delta_{\lambda,6})$ are
hypothetical versions of $f(\delta_{\lambda,2} - \delta_{\lambda,1})$

References

- [1] Estey EH, Thall PF, Wang X, et al. Gemtuzumab ozogamicin with or without interleukin 2 in patients 65 years of age or older with untreated AML and high-risk MDS: comparison with idarubicin + continuous infusion high-dose cytosine arabinoside. *Blood*, 99:4343-4349, 2002.
- [2] Estey EH, Thall PF. New designs for phase 2 clinical trials. *Blood*, 102:442-448, 2003.
- [3] Thall PF, Cook JD. Dose-finding based on efficacy-toxicity trade-offs. *Biometrics*, 60:684-693, 2004.
- [4] Thall PF, Wathen JK. Covariate-adjusted adaptive randomization in a sarcoma trial with multi-stage treatments. Statistics in Medicine. In press.

[5] Thall PF and Wang X. Bayesian sensitivity analyses of confounded treatment effects. *Handbook of Statistics in Clinical Oncology: 2nd Edition, Revised and Expanded*, (J.Crowley and D. Pauler, eds.) New York: Marcel-Dekker, 2005. In press.