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A Phase I/II Dose-Finding Design

• Patient Outcome = {Response, Toxicity} 

• The physician(s) specify 

A Lower Limit   pR* on πR = P(Res)
An Upper Limit pT* on πT = P(Tox)
Three equally desirable(πR, πT) targets 
which are used to construct an
Efficacy-Toxicity Trade-off Contour

Thall and Cook, Biometrics Sept. 2004



Dose Acceptability Criteria

Given current data, a dose x is Acceptable if

Pr{ πE(x,θ) > pE
* | data } > .90

Pr{ πT(x,θ) < pT
* | data } > .90

(other numerical upper cutoffs may be used)



Efficacy-Toxicity Trade-Off Contours



Given current data D, for each dose x 

δ(x,D) = desirability of x is the desirability of

(qE,qT) = ( E{ πE(x,θ) | D},  E{ πT(x,θ) | D} )

Compare x1 to x2 using δ(x1 ,D) and δ(x2 ,D)

Comparing Doses



E{π(x1,θ)| D} = q1 and  E{π(x2,θ)| D} = q2

δ(x2 , D) > δ(x1 , D)



Trial Conduct

1) Physician chooses the starting dose
2) Dose x is acceptable if 

x has acceptable πE(x,θ) & πT(x,θ) or
x is the lowest untried dose & has acceptable πT(x,θ)

3) Treat each cohort at current most desirable dose
4) Do not skip untried doses
5) No dose acceptable Stop the trial
6) At the end of the trial, select the most desirable dose



Treating Acute Ischemic Stroke

Rx = Fixed dose abciximab

+ 0.0, 2.5, 5.0, 7.5, or 10.0 U reteplase

Nmax = 72 patients, cohort size = 3, first 
cohort treated at 0.0 U reteplase

Conducted by National Institute of Neurological 
Diseases & Stroke, NIH, USA (S. Warach, P.I.)



Treating Acute Ischemic Stroke

Tox = Intra-cranial bleeding, death, or 
other severe AE, within 48 hrs.

Res =  Reperfusion at 24 hrs. w/o Tox

Outcome is Res, Tox, or Neither

pT* = .10 Upper Limit on πT

pE* = .50 Lower Limit on πR



Patients with steroid-refractory GVHD after 
allotx from an HLA-matched donor

Rx = .25, .50, .75, or 1.00 mg/m2 Pentostatin

Nmax = 36 patients, cohort size = 3, treat the first 
cohort at 25 mg/m2

Conducted at M.D. Anderson Cancer Center 
(D. Couriel, P.I.)

Treating Steroid-Refractory GVHD



Treating Steroid-Refractory GVHD

Tox =  {Unresolved infection or death} 
Res = { > 1 grade drop in GVHD}

both within 2 weeks
Tox and Res may both occur 

Outcome is bivariate binary

pT* = .40 Upper Limit on P(Tox)

pE* = .20 Lower Limit on P(Res)



Some Possible Dose-Outcome Curves



Probability Models

Trinary Outcomes: 

4-parameter continuation ratio model

Bivariate Binary Outcomes: 

6-parameter odds ratio model



Probability Model: Trinary Outcomes

logit πT(x,θ) =  μT + x βT

logit πE(x,θ)/{1- πT(x,θ) } =  μE + x βE

θ = (μT , βT , μE , βE )



Probability Model: Bivariate Binary Outcomes

logit πT(x,θ) =  μT + xβT

logit πE(x,θ) =  μE + xβE,1 + x2βE,2

πa,b    = πE
a(1-πE)1-a πT

b(1-πT)1-b     +

(-1)a+b πE(1-πE)πT(1-πT)(eψ-1)/(eψ+1)

θ = (μT , βT , μE , βE,1 , βE,2 ,ψ)



Establishing Priors

Each component θr of θ is normally distributed,
θr ~ N(μr, σr)  

ξ = (μ1, σ1, μ2, σ2, …, μp, σp) = hyperparameters

For each xj , elicit

mE,j = prior mean and sE,j = prior sd of πE(xj,θ)

mT,j = prior mean and sT,j = prior sd of πT(xj,θ)



Establishing Priors

Find the vector ξ that minimizes



Computing Posteriors

Numerical integration w.r.t θ of 

f(θ) = Lik( Dn | θ)  x Prior( θ | ξ )

using defensive importance sampling



Simulation Results for the Stroke Trial

Prob(Response)



Prob(Response)



Prob(Response)





Simulation Scenarios for the Pentostatin Trial





A Cohort-by-Cohort Illustration

AML patients relapsed within 6 mos of CR

Rx = Fixed dose ara-C + one of 4 doses of 
XIAP, an anti-sense biological agent 

Res = Alive & in CR at day35
Tox = Gr. 4 symptomatic tox within 35 days

Nmax = 36, cohort size = 3
pT* = .50 for πT, pE* = .20 for πE
Target pairs (.20, 0), (.60, .40), (1.00, .50)
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The Trade-Off-Based Algorithm reliably :

Finds Safe Doses having High Efficacy

Stops if no dose is acceptable
(all doses are too toxic or inefficacious)

Computer code is freely available



Covariate-Adjusted Adaptive Randomization
in a Sarcoma Trial with Multi-Stage Treatments

Motivation: A Trial of  

1200 mg/m2 Gemcitabine (G) 
vs

900 mg/m2 G + Docetaxel (G+D) 
for 

Unresectable Soft Tissue Sarcoma



• Two Prognostic Covariates: 
Leiomyosarcoma (LMS) vs

any other sarcoma subtype
Prior Pelvic Radiation (PPR)

PPR 25% lower doses of G and G+D 
Built-in treatment-covariate interaction

• 120 Patients

• Each patient evaluated at 6, 12, 18, 24 weeks



R

F

S

R

F

S

R

F

S

After each of up to four 6-week stages of therapy :
R = Response (CR/PR)
F = Treatment Failure (Progression or Death)
S = Stable Disease

S at evaluations 1, 2, or 3 Continue evaluation

R

F

S



6 weeks 12 weeks 18 weeks 24 weeks Overall
R R
F F
S R R
S F F
S S R R
S S F F
S S S R R
S S S F F
S S S S S

Possible Overall Outcomes :



Probability Model
Per-course probabilities:

πk,R(T, Z, θ) = Prob{Response| T, Z, θ}

πk,F(T, Z, θ) = Prob{Failure| T, Z, θ}

in stage k = 1,2,3,4 with treatment T = G or G+D

for a patient with covariate  Z = (Z1, Z2)



=    Main Effect (outcome j= R or F)
+ Treatment Effect (T = ± 1)
+ Stage Effect (k=1, 2, 3, 4)
+ Covariate Effects (Z1, Z2 = ± 1)
+ Treatment x Covariate Interactions

Linear Components

ηk,j(T, Z, θ) = μj + αjT + γk,j + ∑r=1,2(βj,r + τj,rT)Zr



Generalized Logistic Model Probabilities

For stage k = 1,2,3,4 and outcome y = R or F



Priors

Prior parameters were obtained by 
eliciting the means of πR and πF
within each prognostic subgroup, 
and calibrating variances to ensure 
suitably “uninformative” priors



Adaptive Randomization Criterion

ξ4,R
+ (T, Z, θ) = Pr(R within 4 stages|Z) 

ξ4,F
+ (T, Z, θ) = Pr(F within 4 stages|Z)

AR Criterion:

ζ(T, Z, θ) =  ω ξ4,R
+ (T, Z, θ) +  (1-ω){1- ξ4,F

+ (T, Z, θ)}

using elicited weight ω = 1.0/(1.0+1.3) = 0.565



Given the current data, randomize a patient 

with covariates Z to G+D with probability

ν(Z, data) =  Pr{ ζ(+1, Z, θ)  >  ζ(-1, Z, θ) |data}

and to G with probability 1 − ν(Z, data) 

Equivalently, one may replace 
ζ= ω ξ4,R

+ +  (1-ω) {1- ξ4,F
+ } with    ξ4,R

+ – 1.3ξ4,F
+



Early Stopping Rule:

At any time during the trial, if 

ν(Z, data) > .99   or ν(Z, data) < .01

Stop the trial in subgroup Z and 
Select the superior treatment arm 

in that subgroup
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Scenario 1 (Null Case)
Treatment Selection Percentages
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Scenario 2
# Patients Treated
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Scenario 2
Treatment Selection Percentages
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Scenario 3
# Patients Treated
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Scenario 3
Treatment Selection Percentages
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Scenario 4a (N=120, True Subgroup %)
# Patients Treated
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Scenario 4a (N=120, True Subgroup %)
Treatment Selection Percentages
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Scenario 4c (N=240, 25% Per Subgroup)
# Patients Treated
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Scenario 4c (N=240, 25% Per Subgroup)
Treatment Selection Percentages
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Sensitivity Analyses

• Ignore Z Treatment-covariate 
interactions are missed completely, & the
Selection and AR imbalances may be 
backwards within subgroups

• Do AR separately within subgroups
Substantial loss in AR imbalance if 
treatment-covariate interactions present, 
because there is no borrowing strength

• Weighting: The AR method is very 
insensitive to changes in ωR = .10 to .91



Conclusions

% patients assigned to the better treatment & 
% correct selection probability both with 
treatment effect & sample size

The method reliably detects treatment-
covariate interactions

Complex & computationally intensive 
User Interface required for trial conduct



Bayesian Sensitivity Analyses of 
Confounded Treatment Effects

in Survival Analysis



Why Randomize?

• A single-arm phase II clinical trial of 
combination chemotherapy A (n=44) 
for acute myelogenous leukemia (AML) 
was conducted at M.D. Anderson 
Cancer Center (MDACC) in 1995

• Combination chemotherapy B was 
studied subsequently at MDACC, as 
one arm of a four-arm randomized AML 
trial in 1996-98

Estey and Thall, Blood, 2003



A Bayesian Weibull regression model
was fit to data consisting of Survival times (T), 
Treatment indicators (IB) and Covariates (Z):

Weibull hazard(t) = φ tφ-1 exp(μ+γIB+βZ)
Z = Performance status, Age, 

Treatment in a laminar airflow room (yes/no), 
Cytogenetic abnormality (3 categories)
Very disperse priors were assumed: 

μ, γ, β1, β2, β3, β4, β5 ∼ iid N(0,1000)
φ ∼ Gamma(mean=1, var=1000)

Why Randomize?



Posterior of RR of Death With B versus A

Pr ( RR > 1 | data)  = .87

Relative Risk of Death With B vs A



In fact, A and B were 
the same treatment !!

A = B = Fludarabine + idarubicin + 
ara-C + G-CSF + ATRA (FAIGA)

The observed RR was actually 
Between-Trial Effect !!



Posterior RR of Death in Trial 2-vs-Trial 1

Relative Risk of Death in Trial 2  vs Trial 1

Pr ( RR > 1 | data )  = .87



The General Problem
Goal:  Compare treatments, A and B, based on 

real-valued parameters, θA and θB
Typically θA and θB are probabilities or hazards, 
possibly transformed and/or covariate-adjusted
Comparative inferences are based on δθ = θA - θB

Problem: If the data arise from two separate 
studies of A and B, one can estimate
γA,1 = Effect of treatment A in study 1
γB,2 = Effect of treatment B in study 2 

A usual estimator estimates the confounded effect
δ = γA,1- γB,2 , not δθ = θA - θB



Overall = Treatment + Latent 

Treatment = Overall – Latent

1. Estimate the Overall effect from the data
2. For several hypothetical Latent Effects,

compute the Treatment Effect and
Pr{Treatment Effect > 0 | data, Latent Effect}

Applied Bayesian Subtraction



Applied Bayesian Subtraction

Assume that  
γA,1 = θA + λ1 and   γB,2 = θB + λ2

where λ1 and λ2 are study effects   

δ =  (θA- θB)  +  (λ1 - λ2)  =  δθ +   δλ

δθ =   δ - δλ



Bayesian Computations
1) Given data DA and DB from the trials of A and 

B, compute the usual posterior, f(δ | DA ,DB)

2) Hypothesize a trial effect distribution, f(h)(δλ)

3) Compute the hypothetical posterior of δθ :
f(h)( δθ | DA DB)   =   f(h)( δ −δλ | DA DB) 

4) Use f(h)(δθ | DA DB) to make hypothesis-based 
inferences about δθ
pr(h)( δθ > 0 | DA DB),   E(h)( δθ | DA DB), etc.



Bayesians are  Sensitive!!

Usual Bayesian Sensitivity Analysis
Prior1(θ) + Lik(data| θ) Posterior1(θ|data)
Prior2 (θ) + Lik(data| θ) Posterior2 (θ|data)
Prior3 (θ) + Lik(data| θ) Posterior3 (θ|data)

Sensitivity to Hypothetical Trial Effects
Trial effect dist’n f1

(h)(δλ) , f(δ|data) f1
(h)(δθ | data)

Trial effect dist’n f2
(h)(δλ) , f(δ|data) f2

(h)(δθ | data)
Trial effect dist’n f3

(h)(δλ) , f(δ|data) f3
(h)(δθ | data)



Constructing Hypothetical Distributions 

1) Fix var(h)(δλ), vary E(h)(δλ) over a 
reasonable domain, and compute 
f(h)( δθ | DA DB) as a function of E(h)(δλ)

or
2) Use historical data DH to obtain a finite 

set of reasonable f(h)( δλ | DH), and 
compute f(h)( δθ | DA ,DB ,DH) for each 



Comparing gemtuzumab ozogamicin 
(GO, “Mylotarg”) to idarubicin + ara-C (IA)

• A trial of IA in 31 AML/MDS patients 
was conducted at MDACC in 1991-92

• A trial of GO ± IL-11 in 31 AML/MDS 
patients was conducted at MDACC in 
2000-2001

• Since IL-11 had no effect on survival, 
we will collapse the 2 arms of the GO 
trial and focus on the GO-vs-IA 
comparison



First GO-vs-IA Sensitivity Analysis

Covariates and Trial Effects
Zubrod performance status (PS)

“Good” = [PS=0,1,2] vs “Poor” = [PS=3,4]
If patient treated in a laminar airflow room (LAR)
Cytogenetic karyotype: normal (baseline), 
-5/-7 abnormality, or other abnormality
βZ = β0+β1Z1 + …+ β4Z4
δτ = δ2τ2+...+δ6τ6 = confounded treatment-trial 
effects vs. trial 1, τj = Indicator of trial j=2,…,6

S(t|Z) = pr(T>t | Z,θ) for t>0,

T = survival time, 
θ = model parameter vector



We considered three possible survival models:

Weibull:  log[–log{S(t|Z)}] = βZ + δτ + φ log(t)

Log logistic: -log[S(t|Z)/{1-S(t|Z)}] = βZ + δτ + φ log(t)

Lognormal : mean = βZ+ δτ , with constant variance.  

Maximized log likelihoods = –137.0,  –139.4,  –141.7 

The Weibull gives a slightly better fit.

First GO-vs-IA Sensitivity Analysis



Fitted Weibull Model for the GO and IA Trials

Posterior Distribution
Variable Mean (sd) 95% CI
Intercept -1.14 (.39) (-1.93  -0.43)
PS=3,4 0.24 (.39) (-0.55,  0.96)

Treatment in LAR -0.43 (.34) (-1.09,  0.22)
Cyto = –5/-7 1.52 (.43) (0.64,  2.43)

Cyto = Other Abn. 1.22 (.40) (0.46,  2.06)
GO Trial vs IA Trial 0.84 (.36) (0.14,  1.53)

φ 0.83 (.09) (0.66,  1.02)



First GO-vs-IA Sensitivity Analysis

1) Assume δ =  δGO +   δλ and 
var(δλ) = ½ var(δ|data) = 0.065

2) Vary E(δλ) from 0 to E(δ |data) = 0.84

3) Compute pr(h)(δθ >0|data) = 
pr(h)( δ - δλ >0|data) as a function of E(δλ)
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Incorporate additional historical data 

From four other trials:

Two trials of FAIG 
(fludarabine + ara-C + idarubicin + G-CSF)

Two trials of FAIGA (FAIG+ATRA)

Second GO-vs-IA Sensitivity Analysis



Trial Treatment # Deaths /
# Patients

Median
(95% Credible 

Interval)

1 IA 16 / 31 47 (20-105)
2 GO 29 /51 12 (7-93)
3 FAIG 34 / 36 14 (7-24)
4 FAIG 18 / 22 30 (13-63)
5 FAIGA 33 / 44 37 (20-64)
6 FAIGA 12 / 17 53 (18-128)

Survival in the Six Trials 



Kaplan-Meier Plots for the 6 Trials 
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For j=2,…,6, denote τj= I(trial j) and 
τj = effect of the jth treatment-trial 
versus IA in trial 1

δτ = δ2τ2+...+δ6τ6 = linear term of 
confounded treatment-trial effects
vs. trial 1

Fit the extended Weibull model

log[–log{ S (t | Z, τ )}] = βZ + δτ + φ log(t)

Second GO-vs-IA Sensitivity Analysis



Fitted Weibull Model for All 6 Trials 
Posterior Distribution

Variable Mean (sd) 95% CI

δ2        (GO) 0.84  (.33) (0.20,  1.48)

δ3     (FAIG) 0.74  (.33) (0.10,  1.45)

δ4      (FAIG) 0.47  (.38) (-0.27,  1.23)

δ5   (FAIGA) 0.39 (.34) (-0.25,  1.08)

δ6   (FAIGA) -0.21 (.40) (-0.96,  0.61)

Intercept 0.62 (.29) (-1.21  -0.09)
PS=3,4 0.67 (.24) (0.20,  1.14)

Treatment in LAR -1.04 (.21) (-1.45,  -0.61)
Cyto = –5/-7 1.23 (.24) (0.77,  1.71)

Cyto = Other Abn. 0.63 (.24) (0.18,  1.09)

φ 0.71 (.05) (0.63,  0.81)
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Posterior Between-Trial Effects 

FAIG studied in trials 3 and 4;   FAIGA studied in trials 5 and 6



Trial Treatment Identifiable 
Effects

Assumed 
Effects

1 IA δ1 = 0
2 GO δ2 δGO+ δλ,2

3 FAIG δ3 δFAIG+ δλ,3

4 FAIG δ4 δFAIG + δλ,4

5 FAIGA δ5 δFAIG + δλ,5

6 FAIGA δ6 δFAIG + δλ,6

Additivity Assumptions 



δ3 = δFAIG+ δλ,3 and δ4 = δFAIG+ δλ,4

δ3 – δ4 = (δFAIG+ δλ,3 ) – (δFAIG+ δλ,4 )  = δλ,3 – δλ,4

δ5 = δFAIGA+ δλ,5 and δ6 = δFAIGA+ δλ,6

δ5 – δ6 = (δFAIGA+ δλ,5 ) – (δFAIGA+ δλ,6 ) = δλ,5 – δλ,6

Use the actual between-trial effects  
±(δ3 - δ4 ) and ±(δ5 – δ6 ) 
as hypothetical δλ,2 – δλ,1 = δλ,2 – 0 = δλ,2

Computing Hypothetical δλ,2 = δλ,2 – δλ,1



Hypothetical Effects
δλ,2 δGO

Hypothetical Posterior
pr(GO is inferior to IA)

= pr(δGO>0|data)

0.84  (.35) 0.00  (.48) 0.50
1.45 (.35) -0.61  (.48) 0.10
1.62 (.35) -0.78  (.48) 0.05
1.94 (.35) -1.10 (.48) 0.01

-0.27 (.29) 1.11 (.44) 0.99
0.27 (.29) 0.56 (.44) 0.90

-0.60 (.35) 1.44 (.50) >0.99
0.60 (.35) 0.23 (.47) 0.69

Second GO-vs-IA Sensitivity Analysis
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Given the data

f(δλ,2 - δλ,1) = f(δλ,3 - δλ,4)  or f(δλ,5 - δλ,6)

This assumption would imply that, once one 
between-trial effect distribution is available, 

thereafter one never needs to randomize.

f(δλ,3 - δλ,4)  and f(δλ,5 - δλ,6 ) are
hypothetical versions of f(δλ,2 - δλ,1)

What We Do Not Assume
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